目录,例1,例2,例3,例4,例5,例6,例7,例8,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例11,例12,例13,例14,例15,目录,上一页,空白页,【例1】,1、一天早晨的气温是5,中午又上升了10,半夜又下降了8,则半夜的气温是_. 2、若上升
著名机构六年级数学春季班有理数综合Tag内容描述:
1、目录,例1,例2,例3,例4,例5,例6,例7,例8,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例11,例12,例13,例14,例15,目录,上一页,空白页,【例1】,1、一天早晨的气温是5,中午又上升了10,半夜又下降了8,则半夜的气温是_. 2、若上升6米记作6米,那么8米表示 . 3若a与5互为相反数,则a =_;若b的绝对值是 ,则b =_,目录,上一页,空白页,1、若 ,则x的值是_. 2、 3、a与b互为相反数,c与d互为倒数,x是绝对值最小的数,则cd(ab)x = . 4若a,b互为相反数,c,d互为倒数,|m|2,则 .,【例2】,目录,上一页,空白页,【例3】。
2、目录,例1,例2,例3,例4,例5,例6,例7,例8,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例11,例12,附加题,目录,上一页,空白页,【前铺1】,(2008年浙江金华市)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( ) A. 吨 B 吨 C 吨 D 吨 (2008年陕西省)零上13记作,零下2可记作( ) A2 B2 C2 D 2 ,目录,上一页,空白页,【前铺1】,(内江市二九年高中阶段教育学校招生考试及初中毕业会考试卷)汽车向东行驶5千米记作5千米,那么汽车向西行驶5千米记作( ) A5千米 B5千米 C10千米 D0千米 某公车原先有22。
3、目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,。
4、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,例14,目录,上一页,空白页,【例1】,证明恒等式:,目录,上一页,空白页,证明:,【例2】,目录,上一页,空白页,【例3】,求证:,目录,上一页,空白页,【例4】,证明恒等式:,目录,上一页,空白页,【例5】,证明恒等式:,目录,上一页,空白页,【例6】,证明恒等式,目录,上一页,空白页,【例7】,证明:,目录,上一页,空白页,实数a与b满足 ,求 的值.,【例8】,目录,上一页,空白页,【例9】,已知 且。
5、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,例14,目录,上一页,空白页,知识要点,代数式恒等变形的意义和代数式恒等变形中常用的特殊方法和 技巧。 把一个代数式通过各种运算或因式分解,变换成另一个与它恒 等的代数式,叫做代数式的恒等变形;代数式的运算是指代数式的 化简和求值。代数式的运算和恒等变形能力是学习数学的重要基本 功之一,恒等变形的作用在于改变原来问题的形式,做到化繁为 简,变难为易,使问题快捷。
6、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,例14,目录,上一页,空白页,知识回顾,一、二元一次方程组的解法 代入消元法 加减消元法 二、含参数方程的解的情况: 同解、唯一解、无数解、无解、整数解等. 字母系数一元一次方程 方程ax=b的解要分类讨论 当a0时,方程的解是 当a=0且b=0时,方程的解是任意数 当a=0且b 0时,方程无解,目录,上一页,空白页,【例1】,解下列二元一次方程: (1) (2),目录,上一页,空白页,【例1】,。
7、目录,例1,例2,例3,例4,例5,例6,例7,例8,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,【练习7】,【练习8】,目录,上一页,空白页,【例1】,1.将下列各数归类:(1分) 其中整数有 ,分数有 ,正数有 , 负整数有 ,正分数有 ,非负数有 , 非负整数有 。,目录,上一页,空白页,【例1】,2.下列各数 , , , 中, 负数有 (1分) 3.大于 且小于2的所有整数是 (2分),目录,上一页,空白页,【例2】,1.(希望杯)1997个不全相等的有理数之和为0,则这1997个有理数中( )(共6分) A至少有一个是零 B至少有998个正数 C至少有。
8、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,例14,目录,上一页,空白页,知识要点,幂的运算法则(乘方运算): 1、 (n为正整数) 2、 (m,n都为正整数) 3、 (m,n都为正整数,且 , ) 4、 ( m,n都为正整数) 5、 (m为正整数) ( ) ( ,m为正整数) 平方差公式: ; 完全平方公式: ;,目录,上一页,空白页,知识要点,三元平方公式: 立方和公式: ; 立方差公式: ;,目录,上一页,空白页,知识要点,和的完全立方公。
9、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,例14,目录,上一页,空白页,知识要点,知识点1:同底数幂的乘法法则 同底数幂相乘,底数不变,指数相加,即 (m、n为正整数) (1)此性质可以推广到三个或三个以上的同底数幂相乘,即 ,( 都为正整数) (2)此性质可逆用,即 (m、n为正整数) 知识点2:幂的乘方法则 幂的乘方,底数不变,指数相乘,即 ( m、n 为正整数) 此性质可逆用,即,目录,上一页,空白页,知识要点,知识。
10、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,例14,目录,上一页,空白页,知识要点,一、整式 :代数式 代数式的定义:用基本的运算符号(加、减、乘、除、乘方等)把数或表示数的字母连结而成的式子叫做代数式单独的一个数或字母也是代数式 :单项式 单项式:像 ,这些代数式中,都是数字与字母的积,这样的代数式称为单项式也就是说单项式中不存在数字与字母或字母与字母的加、减的关系,且单项式的分母中不含字母单独的一。
11、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,例14,目录,上一页,空白页,【例1】,(1)如图所示,小明从家到学校有、三条路可走,每条路的长分别是a、b、c, 则( ) A. abc B. acb C. a=bc D. a=bc,目录,上一页,空白页,【例1】,(2)(黑龙江省哈尔滨市中考题)已知点O在直线AB上,且线段OA的长度为4cm,线段OB的长度为6cm,E、F分别是线段OA、OB的中点,则线段EF的长度为_,目录,上一页,空白页,【基础】线段AB=2009cm,P、Q。
12、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,例14,目录,上一页,空白页,知识回顾,方程ax=b的解要分类讨论 当a0时,方程的解是 当a=0且b=0时,方程的解是任意数 当a=0且b 0时,方程无解 所以含参数方程的解的情况:唯一解、无数解、无解等.,目录,上一页,空白页,【例1】,解关于x的方程: 1. 2.,目录,上一页,空白页,若关于x的方程 有无穷多个解,求a, B 的值,【例2】,目录,上一页,空白页,2. 若a、b为定值,关于x的一元一次方。
13、目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,。