【作业 1】下列各式计算正确的是 ( ) A. 22 (84 )242aaaaa B. 322 (93)( 3)31x yxxxy C. 2322 ( 2)()3x yxyxyxyxy D. 22322 (65 )()65xyxxxyx yx y 【答案】D 【作业 2】 32322 ( 4127
著名机构七年级数学暑假班讲义07-整式的乘法-学生版Tag内容描述:
1、 【作业 1】下列各式计算正确的是 ( ) A. 22 (84 )242aaaaa B. 322 (93)( 3)31x yxxxy C. 2322 ( 2)()3x yxyxyxyxy D. 22322 (65 )()65xyxxxyx yx y 【答案】D 【作业 2】 32322 ( 4127)( 4)xx yx yx 等于 ( ) A. 2 4 7 xy x B. 2 7 3 4 xyxy C. 22 7 3 4 xyxy D. 4 3 7 xyx 【答案】B 【作业 3】若 32 422xxxk能被2x整除,那么k的值为 ( ) A. 1 B. 2 C. -2 D. 0 【答案】D 【作业 4】设 A 是一个多项式,且 224 53 2 32 Ax yx yx ,则 A 等于 ( ) A. 4543 69 510 x yx y B. 3 6。
2、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 整式的加减 知识模块:知识模块:复习旧知复习旧知 【例 1】同类项的概念同类项的概念 (1)多项式中,所含_相同,并且相同字母的_也相同的项叫做同类项,几个常数项也 是_。 (2)下列各式中,与yx2是同类项的是( ) A、 2 xy B、2xy C、yx2 D、 22 3yx (3)若 1 4 3 k a 与 2 3 4 a是同类项,则 k_。 整式的加减 【答案】 (1)字母 指数 同类项 (2)C(3)3 【例 2】合并同类项法则合并同类项法则 把多项式中的同类项合并成一项叫做合并同类项. (1)合并同类项的法则是。
3、 【作业 1】已知 2 4(5)()xxmxxn,则 m、n 的值是( ) (A)5,1mn; (B)5,1mn ; (C)5,1mn ; (D)5,1mn . 【作业 2】若二次三项式 2 20xkx能分解成两个一次因式,则 k 的可能值的个数为 ( ) A2 个 B4 个 C6 个 D8 个 【作业 3】 把多项式 2 5xxm因式分解是7xxn, 则 m、 n 的值分别是 ( ) A14,2mn B14,2mn C14,2mn D14,2mn 【作业 4】因式分解: 2 56xx_. 【作业 5】因式分解: 2 224abab=_. 【作业 6】因式分解: 2 524abab_. 【作业 7】因式分解: 2 710xx_. 【作业 8】因式分解: 32 310xxx。
4、 【作业 1】 在下列代数式:1 2 ab, 2 ab , 2 1abb,3 x + 2 y , 32 3xx中, 多项式有 ( ) A2 个 B3 个 C4 个 D5 个 【作业 2】 122 1ax y与 22 x y是同类项,则必有( ) A. 1a B. 1a C. 1a D. a是任何数 【作业 3】单项式 2 2x与 2 1 2 x合并的结果可写为( ) A. 2 1 2 2 x B. 4 1 2 2 x C. 2 5 2 x D. 4 5 2 x 【作业 4】多项式 2 243xx中,二次项系数是_,常数项是_ 【作业 5】 323 3x yxyy是_次多项式,关于 y 的最高次项是_,关于 x 的一次项 是_ 【作业 6】 3232 27xyx yx y按字母 y 的升幂排列是_ _ 【作业 7】3xy与yx (填。
5、 课后作业 尚孔教育个性化辅导 课后作业 尚孔教育培养孩子终生学习力 第1页 【作业 1】aabc = ,babc = . 【作业 2】3547aabb= , 2 233xyxy= . 【作业 3】 2222 23436xxyyxyxy = . 【作业 4】计算47abba= . 【作业 5】计算2xyxzy = . 【作业 6】 ( )+ 22 230a bab. 【作业 7】 2 351aa+( )= 2 351aa 【作业 8】多项式 2242 1 3 2 xxyyx是 次 项式. 【作业 9】若单项式 2 3 mm x y 与 2 2 n x y的和为 2n x y,则m= ,n= . 【作业 10】大客车上原有5ab人,中途上车若干人,车上共有乘客85ab,则中途 上车的乘客。
6、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 整式的除法 知识模块:知识模块:单项式除以单项式单项式除以单项式 1、单项式除以单项式的运算法则 单项式除以单项式,把系数、同底数幂分别相除,作为商式的因式,对于只在被除式里含有的字母, 则连同它的指数作为商的一个因式. 2、两个单项式相除可分为三个步骤 (1)把系数相除,所得的结果作为商的系数; (2)把同底数的幂分别相除,以所得的结果作为商的因式; 整式的除法 (3)只在被除式里含有的字母,连同其指数作为商的一个因式. 这里显然指的是被除式能被除式整。
7、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 同底数幂的乘法 同底数幂的乘法 知识模块:知识模块:回顾回顾旧知旧知 乘方乘方(6 下下第五章:有理数)第五章:有理数) 1、一般地,我们把 n 个相同因数 a 相乘,记作 n a,即 n na aaaaa 个 2、定义:求 n 个相同因数的积的运算,叫做乘方乘方乘方的运算结果叫做幂幂,在 n a中,a 叫做底数,n 叫做指数指数 n a读作 a 的 n 次方( “2 次方”又可以读作“平方” , “3 次方”又可以读作“立方” ) 3、读法: n a读作 a 的 n 次方, n a看作运算结果时,读作 a 的 n 次。
8、 【作业 1】代数式 2 2()ab表示( ) Aa的2倍与b平方的差 Ba与b平方的差的2倍 Ca与b平方的2倍的差 Da与b的平方差的2倍 【答案】B 【作业 2】若x表示一个三位数,y也表示一个三位数,小王想用xy、来组成一个六位数且 把x放在y的左边,你认为下列表达式中( )是正确的 Axy Bxy C1000xy D1000yx 【答案】C 【作业 3】在下列式子中,属于代数式的是( ) 23x ;3; 1 xy ;2cr; 1 x x ;21x A B C D 【答案】C 【作业 4】对于代数式 1 2 abc, 32 2xxyy, 1 m , 5 2 , 3 4 xy,其中判断正确 的是( ) A、是整式 B、是三项式 C是二次三项。
9、 【作业 1】下列多项式乘法中不能用平方差公式计算的是 ( ) A.)( 3333 baba B.)( 2222 abba C.) 12) 12( 22 yxyx D.)2)(2( 22 yxyx 【作业 2】填空 (1) 2 411681aaa ; (2)9_ 49 1 3 7 1 22 baab; (3) 22 )41(161aa ; (4) 2 )14(8aa 【作业 3】计算: 22 11 33 xyxy 【作业 4】计算: 22 (23 )(23 )(49)xyxyxy 【作业 5】计算:(2 )(2 )abc abc 【作业 6】计算: 42 21624xxxx 乘法公式 【作业 7】化简并求值 22 (21)(1) ,2xxx 其中. 【作业 8】计算(1) 9 1 9 1 22 xx 。
10、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 十字相乘法 1二次三项式: (1)多项式cbxax 2 ,称为字母 x 的二次三项式,其中 2 ax称为二次项,bx 为一次项, c 为常数项例如,32 2 xx和65 2 xx都是关于 x 的二次三项式 (2)在多项式 22 86yxyx中,如果把 y 看作常数,就是关于 x 的二次三项式;如果把 x 看作常数,就是关于 y 的二次三项式 (3)在多项式372 22 abba中,把 ab 看作一个整体,即3)(7)(2 2 abab,就是关于 ab 的二次三项式同样,多项式12)(7)( 2 yxyx,把 xy 看作一个整体,就 十字相乘法 是关于 xy 的二。
11、 【作业 1】计算: 2 2 3 4 xy() 【作业 2】如果单项式 34 3x y和 32 1 2 m x y 是同类项,那么m 【作业 3】计算: 22 232aabbab() 【作业 4】计算:33abab= 【作业 5】请写出两个整式,使它们的和为 2 321xx,它们可以是和 【作业 6】如果 22 4,14xyxy,那么 2 xy 【作业 7】若0 4 1 2 xx,那么 2 1 x 【作业 8】如果规定bcad dc ba ,那么 yxyx xyyx 【作业 9】已知 22 4ykxyx是一个完全平方式,则 k 的值是 【作业 10】下列各式,代数式的个数是( ) 6x 22 abba 417x b 0 2 3 x 430a 3 26 8。
12、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 整式的概念 整式的概念 知识模块:知识模块:单项式及相关概念单项式及相关概念 1、 单项式概念:由数字与字母的积或字母与字母的积所组成的代数式叫做单项式 (1)单项式的五种情形: 单独的一个数,如7 、-3等 单独的一个字母,如m 、y等 数与数的积,如3等 字母与字母的积,如 2 xy等 数与字母的积,如2ab等 (2)判断单项式的方法: 看运算中是否只含乘法运算; 看分母中含不含字母. 2、单项式的次数和系数: (1)单项式的次数:是指单项式中所有字母的指数和例如:单项。
13、 【作业 1】下列各式计算正确的是 ( ) A. 22 (84 )242aaaaa B. 322 (93)( 3)31x yxxxy C. 2322 ( 2)()3x yxyxyxyxy D. 22322 (65 )()65xyxxxyx yx y 【作业 2】 32322 ( 4127)( 4)xx yx yx 等于 ( ) A. 2 4 7 xy x B. 2 7 3 4 xyxy C. 22 7 3 4 xyxy D. 4 3 7 xyx 【作业 3】若 32 422xxxk能被2x整除,那么k的值为 ( ) A. 1 B. 2 C. -2 D. 0 【作业 4】设 A 是一个多项式,且 224 53 2 32 Ax yx yx ,则 A 等于 ( ) A. 4543 69 510 x yx y B. 3 65 52 yxy C. 4。
14、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 整式单元复习 知识模块:知识模块:整式的概念整式的概念 整式单元复习 1、字母表示数: 2、代数式:定义:定义:用运算符号运算符号和括号括号把数或表示数的字母连结而成的式子。 注意:注意: “” 、 “= =” 、“ ” 、“ ” 、“” 、“” 都不是运算符号都不是运算符号 3、整式: 知识模块:整式的加减知识模块:整式的加减 1、同类项:所含的字母相同字母相同,且相同字母的指数指数也相同相同的单项式单项式叫同类项。 合并同类项法则:字母和字母的指数不变,把同类。
15、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 乘法公式 知识模块:知识模块:平方差平方差公式公式 1、平方差平方差:两个数的和与这两个数的差的乘积等于这两个数的平方差,即 22 ababab. 公式中的 a、b 可以是任意的数或代数式(单项式、多项式). 2、平方差平方差公式的结构特征公式的结构特征: (1)左边是两个两项式相乘,这两个二项式中,有一项是完全相同的,另一项是两个互为相反数. (2)右边是这两个数的平方差,即完全相同的项与互为相反的项的平方差. 3、公式的应用:公式的应用: (1)公式中的字母ab、可以。
16、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 整式的运算复习 整式的运算复习 知识模块:知识模块:代数式代数式 1. .单项式单项式 (1)单项式的概念:数与字母的积这样的代数式叫做单项式,单独一个数或一个字母也是单项式。 注意:数与字母之间是乘积关系。 (2)单项式的系数:单项式中的字母因数叫做单项式的系数。 如果一个单项式,只含有字母因数,是正数的单项式系数为 1,是负数的单项式系数为1。 (3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。 2. .多项式多项式 (1)多项式的概。
17、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 整式的除法 知识模块:知识模块:单项式除以单项式单项式除以单项式 1、单项式除以单项式的运算法则 单项式除以单项式,把系数、同底数幂分别相除,作为商式的因式,对于只在被除式里含有的字母, 则连同它的指数作为商的一个因式. 2、两个单项式相除可分为三个步骤 (1)把系数相除,所得的结果作为商的系数; (2)把同底数的幂分别相除,以所得的结果作为商的因式; 整式的除法 (3)只在被除式里含有的字母,连同其指数作为商的一个因式. 这里显然指的是被除式能被除式整。
18、 【作业 1】 (1)xyx 7 2 2_. (2))7(3 2 aba_. (3) 2 ) 2 5 ()2(aba_. (4)) 27 1 ()3( 3 xzxy_. (5) 22 )2()(xzxy_. (6)) 5 3 (5)2( 223 baabab_. (7) 35 )()(baba_. (8) 532 )()()(abbaba_. 【答案】 (1) 2 4 7 x y(2) 3 21a b(3) 32 25 2 a b(4) 43 x y z(5) 422 4x y z(6) 46 6a b(7) 8 ab(8) 5 2 ab 【作业 2】下列各式中,计算正确的是( ) (A) 743 743aaa (B) 1052 824xxx (C) 632 632aaa (D) 23232 3)2(yxyxxyyx。
19、 【作业 1】 (1)xyx 7 2 2_. (2))7(3 2 aba_. (3) 2 ) 2 5 ()2(aba_. (4)) 27 1 ()3( 3 xzxy_. (5) 22 )2()(xzxy_. (6)) 5 3 (5)2( 223 baabab_. (7) 35 )()(baba_. (8) 532 )()()(abbaba_. 【作业 2】下列各式中,计算正确的是( ) (A) 743 743aaa (B) 1052 824xxx (C) 632 632aaa (D) 23232 3)2(yxyxxyyx 【作业 3】)104 . 0()103 . 0()10( 52 等于( ) (A) 8 102 . 1(B) 8 102 . 1(C) 7 102 . 1(D) 7 102 . 1 【作。
20、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 整式的乘法 知识模块知识模块: :单项式与单项式相乘单项式与单项式相乘 1、单项式与单项式相乘的乘法法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘的积作 为积的因式,其余字母连同它的指数不变,也作为积的因式,再合并同类项; 注意:注意: (1)积的系数等于各因式系数的积; (2)相同字母相乘是同底数幂的乘法,按照“底数不变,指数相加”计算; (3)只在一个单项式里含有的字母,要连同它的指数写在积里,要注意不要丢掉这个因式; (4)单项式乘以单项。