【作业 1】下列多项式不能用平方差公式分解的是( ) A1 4 1 22 ba B 4 25. 04m C 2 1a D1 4 a 【作业 2】 在多项式 22222222 2yxyxyxyx、中, 能用平方差公式分解的有 ( )A1 个 B2 个 C3 个 D4 个 【作业 3】把16 2 a因
著名机构七年级数学暑假班讲义14-因式分解综合-学生版Tag内容描述:
1、 【作业 1】下列多项式不能用平方差公式分解的是( ) A1 4 1 22 ba B 4 25. 04m C 2 1a D1 4 a 【作业 2】 在多项式 22222222 2yxyxyxyx、中, 能用平方差公式分解的有 ( )A1 个 B2 个 C3 个 D4 个 【作业 3】把16 2 a因式分解的结果是( ) A(a+8)(a-8) B(a+4)(a-4) C(a+2)(a-2) D 2 )4( a 【作业 4】)3)(3(aa是下列哪个多项式分解的结果( ) A. 9 2 a B. 9 2 a C. 9 2 a D. 9 2 a 【作业 5】运用公式计算 2 99,应该是( ) A先计算 2 ) 1100( B先计算(100+1) (100-1) C先计算(99+1) (99-1) D先计算 2 ) 199( 【作业 6】多。
2、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 提公因式法+公式法 1 1、 因式分解的定义:因式分解的定义: 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分 解因式. 注意:(1)因式分解与整式乘法是相反方向的变形,即互逆的运算. (2)因式分解是恒等变形,因此可以用整式乘法来检验. 提公因式法+公式法 2、提公因式法:、提公因式法: 多项式 ma+mb+mc 中的各项都有一个公共的因式 m,我们把因式 m 叫做这个多项式的公因 式.ma+mb+mc=m(a+b+c)就是把 ma+mb+mc 分解成两个因式。
3、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 分组分解法 1. .分组分解法的意义分组分解法的意义 有的多项式各项没有公因式,也不能直接运用公式分解因式,但是某些项通过适当的结合成为一 组,利用分组可以进行多项式的局部分解,然后,综合起来,再从总体上用提取公因式法和十字相乘 法继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法. 2. .分组的原则分组的原则 (1)分组分解法适用于不能直接使用提取公因式法、公式法和十字相乘法的多项式. (2)分组分解法比较灵活,其关键在于分组要适当,它的。
4、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 提取公因式法 提取公因式法 知识模块:知识模块:因式分解的概念因式分解的概念 1、因式分解:因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分 解,也叫做把这个多项式分解因式. 注意:注意: (1)因式分解与整式乘法是相反方向的变形,即互逆的运算. (2)因式分解是恒等变形,因此可以用整式乘法来检验. 【例 1】下列各式从左边到右边的变形,哪些是因式分解?哪些不是因式分解? (1) 2 231231aaaa (2) 1 11xyxy xy (3) 2 111aaa (4) 2。
5、 【作业 1】因式分解: 2 56xx_. 【答案】61xx 【作业 2】因式分解: 2 224abab=_. 【答案】64abab 【作业 3】因式分解: 2 524abab_. 【答案】83abab 【作业 4】因式分解: 2 710xx_. 【答案】52xx 【作业 5】因式分解: 32 310xxx_. 【答案】52x xx 【作业 6】因式分解: 4222 961yya x _.。
6、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 因式分解综合复习 因式分解综合复习 知识模块:知识模块:因式分解的概念因式分解的概念 1、因式分解的概念:把一个多项式化为几个整式的积的形式,叫做把多项式因式分解. 2、注意:因式分解是“和差”化“积” ,整式乘法是“积”化“和差”故因式分解与整式乘法之间是互 为相反的变形过程,因些常用整式乘法来检验因式分解. 知识模块:提取公因式法知识模块:提取公因式法 1、提取公因式法的概念:把mambmc,分解成两个因式乘积的形式,其中一个因式是各项的公因 式 m,另一。
7、 尚孔教育个性化辅导教案 尚孔教育个性化辅导 教学设计方案 尚孔教育培养孩子终生学习力 第1页 教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 因式分解综合复习 因式分解综合复习 尚孔教育个性化辅导教案 尚孔教育个性化辅导 教学设计方案 第2页 尚孔教育培养孩子终生学习力 知识模块:知识模块:因式分解的概念因式分解的概念 1、因式分解的概念:把一个多项式化为几个整式的积的形式,叫做把多项式因式分解. 2、注意:因式分解是“和差”化“积” ,整式乘法是“积”化“和差”故因式分解与整式乘法之间是互 为相反的变形。
8、 【作业 1】若 m2+2m+n2-6n+6=0,则 m= .n= . 【答案】13 【作业 2】分解因式 42 21yy= . 【答案】 2 2 1y 【作业 3】若(x2+y2)(x2+y2-1)-12=0,则 x2+y2= . 【答案】4 【作业 4】分解因式 a2(b-c)+b2(c-a)+c2(a-b)= . 【答案】abcacb 【作业 5】如果 m= 3 1 a(a+1)(a+2),n= 3 1 a(a-1)(a+1),那么 m-n= . 【答案】1a a 【作业 6】分解因式 7xn +1-14xn+7xn-1(n 为不小于 1 的整数)= . 【答案】 2 1 71 n xx 【作业 7】已知 a-b1,ab2,则 a2b-2a2b2+ab2的值是 . 【答案】2或14 【作业 8】观察下列算式, 32-128 52-3216 72-5224 92-723。
9、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 因式分解综合 因式分解综合 知识模块:知识模块:因式分解的概念及注意事项因式分解的概念及注意事项 1、因式分解:因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初 中代数中占有重要地位和作用,在其它学科中也有广泛应用. 2学习本章知识时,应注意以下几点。 (1) 因式分解的对象是多项式; (2) 因式分解的结果一定是整式乘积的形式; (3)分解因式,必须进行到每一个因式都不能再分解为止; (4)公式中的字母可以表示单项式,也可以表。
10、 【作业 1】若 m2+2m+n2-6n+6=0,则 m= .n= . 【作业 2】分解因式 42 21yy= . 【作业 3】若(x2+y2)(x2+y2-1)-12=0,则 x2+y2= . 【作业 4】分解因式 a2(b-c)+b2(c-a)+c2(a-b)= . 【作业 5】如果 m= 3 1 a(a+1)(a+2),n= 3 1 a(a-1)(a+1),那么 m-n= . 【作业 6】分解因式 7xn +1-14xn+7xn-1(n 为不小于 1 的整数)= . 【作业 7】已知 a-b1,ab2,则 a2b-2a2b2+ab2的值是 . 【作业 8】观察下列算式, 32-128 52-3216 72-5224 92-7232 根据探寻到的规律,请用 n 的等式表示第 n 个等式 【作业 9】若 x-1 是 x2-5x+c 的一个因式,则 c= . 【。