教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 知识模块:知识模块:全等模型全等模型 把一个图形经过平移、翻折、旋转后,它们的位置虽然变化了,但是形状、大小都没有改变,即平移、 翻折、旋转前后的图形全等. 我们把平移、翻折(轴对称) 、旋转称为几何变换. 1、常见平移模型 全等三
著名机构数学讲义春季13-七年级基础版-等腰三角形-教师版Tag内容描述:
1、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 知识模块:知识模块:全等模型全等模型 把一个图形经过平移、翻折、旋转后,它们的位置虽然变化了,但是形状、大小都没有改变,即平移、 翻折、旋转前后的图形全等. 我们把平移、翻折(轴对称) 、旋转称为几何变换. 1、常见平移模型 全等三角形的判定(二) 2、常见轴对称模型 3、 常见旋转模型: 【例 1】如图(1)所示,把ABC 沿直线 BC 移动线段 BC 那样长的距离可以变到ECD 的位置; 如图(2)所示,以 BC 为轴把ABC 翻折 180,可以变到DBC 的位置; 如图(3)所示,以点。
2、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 三角形综合复习 知识模块:知识模块:全等三角形基本模型全等三角形基本模型 1 1、轴对称型全等三角形轴对称型全等三角形 把一个图形沿着某一条直线折叠过来,如果它能够与另一个图形重合,那么这两个图形关于这条直线对 称,下图是常见的轴对称型全等三角形。 三角形综合复习 E F B A D C 【例 1】 如图,在BAC的两边截取ABAC,又截取ADAE,连CD、BE交于F。 试说明:AF平分BAC。 【答案】联结BC,证明ABEACD(SAS) ,得到B=C 由ABAC得到ABC=ACB,所以得到FBC=FCB,即FC=FB 。
3、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 等边三角形 等边三角形 定 义 示例剖析 等边三角形的定义:三条边都相等的三角 形叫做等边三角形 如图ABC 中,ABACBC,则ABC 是等边三角 形. 等边三角形的性质: 三边都相等,三个内角都相等,并且每一 个角都等于60 如图,ABC是等边三角形,则 60ABACBCABC , 等边三角形的判定: 三条边都相等的三角形是等边三角形 三个角都相等的三角形是等边三角形 有一个角是60的等腰三角形是等边三 角形 若ABACBC,则ABC是等边三角形 若ABC ,则ABC是等边三角形 若60ABACA ,(或60B,或。
4、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 三角形综合复习 知识模块:知识模块:三角形三角形 1、三角形的三边关系:三角形中任意两边之和大于第三边; 三角形中任意两边之差小于第三边; 2、三角形的外角性质: (1)三角形的外角和等于360 三角形综合复习 (2)三角形的一个外角等于与它不相邻的两个内角的和 (3) 三角形的一个外角大于与它不相邻的任何一个内角 3、三角形具有稳定性 知识模块:全等三角形知识模块:全等三角形 1、 全等三角形的性质: (1)对应边相等; (2)对应角相等; 2、全等三角形的判定 SA。
5、教师姓名 冯娜娜 学生姓名 年 级 初一 上课时间 单击此处输 入日期。 学 科 数学 课题名称 等腰三角形 等腰三角形 (尚孔教研院彭高钢(尚孔教研院彭高钢知识模块:等腰三角形的概念知识模块:等腰三角形的概念 (1)等腰三角形:两条边相等的三角形叫等腰三角形; (2)相等的两条边叫做等腰三角形的腰;另一边叫做底边; (3)两腰的夹角叫顶角,腰和底边的夹角叫做底角. (尚孔教研院彭高钢(尚孔教研院彭高钢知识模块:知识模块:等腰三角形的性质等腰三角形的性质 (1)等腰三角形的两个底角相等.(简写成“等边对等角”) (2)等腰三。
6、教师姓名 冯娜娜 学生姓名 年 级 初一 上课时间 单击此处输 入日期。 学 科 数学 课题名称 等腰三角形 等腰三角形 (尚孔教研院彭高钢(尚孔教研院彭高钢知识模块:等腰三角形的概念知识模块:等腰三角形的概念 (1)等腰三角形:两条边相等的三角形叫等腰三角形; (2)相等的两条边叫做等腰三角形的腰;另一边叫做底边; (3)两腰的夹角叫顶角,腰和底边的夹角叫做底角. (尚孔教研院彭高钢(尚孔教研院彭高钢知识模块:知识模块:等腰三角形的性质等腰三角形的性质 (1)等腰三角形的两个底角相等.(简写成“等边对等角”) (2)等腰三。
7、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 等腰三角形 知识模块:等腰三角形知识模块:等腰三角形 等腰三角形 C D A B 定 义 示例剖析 等腰三角形的定义:有两条边相等的三角 形叫做等腰三角形 如图,ABC是等腰三角形,ABAC 则AB、AC是该三角形的腰. BC是该三角形的底边. B、C是该三角形的底角, 且BC . A是该三角形的顶角. ABAC,BC 等腰三角形的性质: (1)两底角相等(等边对等角) (2) “三线合一” ,即顶角平分线、底 边上的中线、底边上的高相互重合 (3) 是轴对称图形,底边的垂直平分线 是它的对称轴 ABC。
8、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 等腰三角形 等腰三角形 定 义 示例剖析 等腰三角形的定义:有两条边相等的三角 形叫做等腰三角形 如图,ABC是等腰三角形,ABAC 则AB、AC是该三角形的腰. BC是该三角形的底边. B、C是该三角形的底角, 且BC . A是该三角形的顶角. ABAC,BC 等腰三角形的性质: (1)两底角相等(等边对等角) (2) “三线合一” ,即顶角平分线、底 边上的中线、底边上的高相互重合 (3) 是轴对称图形,底边的垂直平分线 是它的对称轴 ABC是等腰三角形,ABAC 若ADBC,则BDCD, BADCAD ; 若BD。
9、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 等腰三角形 知识模块:等腰三角形知识模块:等腰三角形 等腰三角形 C D A B 定 义 示例剖析 等腰三角形的定义:有两条边相等的三角 形叫做等腰三角形 如图,ABC是等腰三角形,ABAC 则AB、AC是该三角形的腰. BC是该三角形的底边. B、C是该三角形的底角, 且BC . A是该三角形的顶角. ABAC,BC 等腰三角形的性质: (1)两底角相等(等边对等角) (2) “三线合一” ,即顶角平分线、底 边上的中线、底边上的高相互重合 (3) 是轴对称图形,底边的垂直平分线 是它的对称轴 ABC。
10、 尚孔教育个性化辅导教案 尚孔教育个性化辅导 教学设计方案 尚孔教育培养孩子终生学习力 第1页 教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 等腰三角形 等腰三角形 尚孔教育个性化辅导教案 尚孔教育个性化辅导 教学设计方案 第2页 尚孔教育培养孩子终生学习力 定 义 示例剖析 等腰三角形的定义:有两条边相等的三角 形叫做等腰三角形 如图,ABC是等腰三角形,ABAC 则AB、AC是该三角形的腰. BC是该三角形的底边. B、C是该三角形的底角, 且BC . A是该三角形的顶角. ABAC,BC 等腰三角形的性质: (1)两底角相等(等边对等。